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ARTICLE INFO ABSTRACT 

Keywords   The main objective of this study is to develop an efficient machine learning-based model for 
the early prediction of clinical mastitis in Holstein Friesian dairy cattle where automatic 

milking system (AMS) data is used. The model aims to offer a costless opportunity for mastitis 

control and reduce its negative impact on livestock production. Different forward multilayer 
perceptron (MLP) neural networks with backpropagation (BP) learning algorithms using 

various numbers of hidden neurons and epochs have been introduced. The results of the 

established models are evaluated based on different metrics such as the accuracy, the F1 core, 
the precision, the recall, and the area under the receiver operating characteristic curve (ROC- 

AUC). Out of the established twelve models, the optimal neural network consisted of a single 

hidden layer of 15 hidden neurons, Relu hidden activation function, and a sigmoid activation 
function at the output layer. After training the model for 100 epochs, it achieved a high 

classification accuracy of 86%, an F1-score of 78%, precision of 93%, recall of 67%, and an 

excellent ROC-AUC of 82%. The study demonstrated that the total milk this lactation (TOTM), 
days in milk (DIM), days open, milk peak (MPEAK), 305-day mature equivalent milk 

production (305 ME), and daily milk yield (DMY) are important inputs for the model training. 

The results show that the forward neural network (FNN) with a backpropagation algorithm can 
offer opportunities to integrate clinical mastitis prediction within a computerized decision                   

support tool. 
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1. INTRODUCTION 
 

Bovine mastitis, a mammary gland inflammation that results 

in abnormal milk composition (Dhoble et al., 2019), is one 

of the costliest endemic disorders of dairy farms and is 

thought to account for 38% of all direct production disease 

costs (Hyde et al., 2017). In addition to the high economic 

loss, mastitis is a painful condition that hinders animal 

welfare and reduces its production. It is also considered one 

of the most important causes of extensive antimicrobial 

usage in the worldwide dairy industry (Hyde et al., 2020). 

The early detection, diagnosis, and control of such health 

problems, which have clinical and subclinical forms, is a 

challenge for dairy farms to minimize the resulting negative 

impacts early (Zhou et al., 2022) . 

In the dairy field, large quantities of data are generated daily 

and stored in databases. Such data involves valuable 

information to improve farm management and the decision-

making process. However, as a result of the large flow of 

records and the large number of features, pattern 

visualization and discovering abnormalities in this 

multidimensional data are challenging and require advanced 

software tools to be explained (Pietersma et al., 2005). It has 

been demonstrated that the application of advanced 

processing and analytics tools to such multidimensional 

dairy data can have a positive impact on livestock production 

systems and the decision-making process (Fadul-Pacheco et 

al., 2022) . 

In the last decade, there has been great interest in Artificial 

Neural Networks (ANNs), and they have been successfully 

integrated into many domains such as medicine, molecular 

biology, image recognition, and environmental, and 

ecological sciences (Mas et al., 2004). 

In the livestock field, ANN has various applications such as 

forecasting milk production, estrous detection, lameness 

detection, mastitis prediction, and bull breeding soundness 

assessment (Dongre and Gandhi, 2016) . 

ANNs, a deep learning computing technique, are non-linear 

mapping structures that mimic the human brain in the way it 

learns. During the learning process, it acquires knowledge 

by responding to new environments and stores it in 

interneuron synapses (Shaikhina and Khovanova, 2017). 

They have been successfully used to build accurate 

predictive models as they are effective since they 

accommodate a wide range of uncertainty and are flexible to 

accommodate noisy, incomplete, fuzzy, and probabilistic 

data. So, now they are utilized as alternative statistical 

analytical tools (Parthasarathy and Narayanan, 2014) . 

The multi-layer feed-forward neural network, or multi-layer 

perceptron (MLP), is one of the most widely used ANNs and 

consists basically of three layers: the input, hidden, and 

output layers. It can model complex, non-linearly separable 

problems (Pijanowski et al., 2002). In MLP, the information 

flows unidirectionally forward through the consecutive fully 

connected layers from the input layer to the output layer, 

passing by the hidden layer, the output of one layer 

introduced as input to the next layer, and so on. Each union 

between processing units (neurons) has its weight vector and 
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neurons of the same layer (hidden and output layers) have 

the same activation function (Mas et al., 2014) . 

Backpropagation (BP) is an iterative gradient learning 

algorithm that is commonly used in MLP to minimize the 

mean square error between the predicted output of ANN and 

the actual output (Paegelow, 2018). During the learning or 

training process of the neural network, the calculations are 

carried out starting from the input layer passing towards the 

output layer. The final ANN output values are then 

compared with the true output values; any error obtained is 

then propagated back through the network and weights are 

adjusted after many iterations of forward and 

backpropagation steps (epochs). The approximate expected 

output is obtained once the error converges to a minimum 

value (Shreyas et al., 2023) . 

The milk features associated with bovine mastitis could be 

used to establish robust ANN models and the integration of 

such models in in-line automated milking systems may raise 

the efficiency and accuracy of the early pathogens causing 

mastitis detection in milk even before the onset of any 

clinical signs (Dongre and Gandhi, 2016). Therefore, this 

paper aims to develop different backpropagation-based 

ANN models for mastitis classification in purebred Holstein 

Friesian cattle based on production, reproduction, and some 

health parameters obtained from the automatic dairy records. 

The classifying ability of the ANN models is evaluated and 

compared using the models' performance metrics, to obtain 

the optimal prediction model. The performance metrics 

include the accuracy, the F1 score, the precision, the recall, 

and the area under the receiver operating characteristic curve 

(ROC-AUC). 

 

2. MATERIAL AND METHODS     
The Animal Care and Welfare Committee, Faculty of 

Veterinary Medicine, Benha University, Egypt approved the 

current study with the reference ethical approval number 

(BUFVTM:17-04-23) . 

 

2.1.Data collection and variables identification 

The current investigation material included information on 

purebred Holstein-Friesian dairy cows. A random sample of 

3880 retrospective milk, reproduction, and some health 

computerized records was collected from a commercial 

production farm in Egypt. All cows included in the study had 

a freshening date between 2016 and 2019 and they are of 

different age groups and at different numbers and stages of 

lactation. The process of milk information recording is 

carried out by an automatic sensor installed in the automated 

milking parlor and then monitored in the dairy herd 

management system (Dairy Comp 305 software). The 

variables used to develop the current study are outlined in 

Table 1 . 

 

2.2.Herd management and mastitis detection 

Cows are housed in a shaded open yard with free stalls, lined 

with a sand floor, and equipped with a cool spraying system 

in the summer thus relieving heat stress in the summer 

months. The farm applies the total mixed ration method with 

computerized calculating systems that control feeding 

portions according to the productivity and the reproductive 

demand of animals. Water was supplied freely all day long. 

Pre-milking and post-milking udder hygiene measures were 

practiced through udder washing and dipping the teats in an 

iodine solution. The milking process takes place on a 

herringbone with a rapid exit automatic milking parlor three 

times a day using machine milking, and milk parameters for 

each cow are recorded in a computerized database. Detection 

of CM depends on the presence of clinical signs on the udder 

such as hotness, redness, swelling, painful reaction, and 

hardness of udder tissues, and then the infection is confirmed 

by the California Mastitis Test (CMT) . 

 

2.3. Data preprocessing 

Before the model building, data was visualized against the 

missing values and outliers. No missing value was detected. 

However, outliers were detected in almost all the numerical 

predictor features including age at the last season, lactation 

order, daily milk yield (DMY), milk peak (MPEAK), total 

milk yield this lactation (TOTM), 305-days mature 

equivalent milk production (305ME), and days open, and 

they have been replaced with these features' percentiles. 

Dependent (mastitis) and independent features (lactation 

order, age at last season, DMY, TOTM, MPEAK, 305ME, 

days in milk (DIM), days open, reproductive status, calving 

season, lameness, abortion, metritis, milk fever, and retained 

placenta) were identified. Data was scaled using the Z-score 

standardization method. All the categorical features were 

labeled using the label-encoder which assigns a unique 

numerical value to each category of the categorical variable.

 

Table 1: The input and output model features description. 

 Features Description Type 

• Input features: 

1) Lactation order How many lactation season/cattle? (Min=1 and Max= 9) Numerical 

2) Age at last season Animal age at the time of data collection. (Mean = 3.55 year) Numerical 

3) DMY Average milk production/cow/day = 29.6 kg/day Numerical 

4) TOTM The cumulative milk production/cow of the last lactation. 

(Mean = 7028.9 kg) 

Numerical 

5) MPEAK The peak milk yield/cow in the last season. (Mean = 42.18 kg) Numerical 

6) 305ME 305ME = 305 x TOTM / DIM. (Mean = 10987.6 kg) Numerical 

7) DIM (Mean = 242.18 days) Numerical 

8) Days Open (Mean = 180.68 days from calving to conception) Numerical 

9) Reproductive status Pregnant, non-pregnant, and bred Categorical 

10) Calving season Summer and winter Categorical 

11) Lameness Yes /  No Categorical 

12) Abortion Yes /  No Categorical 

13) Metritis Yes /  No Categorical 

14) Milk fever Yes /  No Categorical 

15) Retained placenta Yes /  No Categorical 

• Output feature: 

•    Mastitis Healthy / Mastitis Categorical 

DMY: daily milk yield, TOTM: total milk this lactation, MPEAK: milk peak, 305ME: 305-days mature equivalent milk production, DIM: days in milk. 
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2.4 Multi-layer perceptron (MLP) neural network with 

backpropagation (BP) learning algorithm  

MLP is a widely used neural network with a BP-supervised 

learning method for error backpropagation through weight 

adjustment. It is very suitable for modeling non-linearly 

separable   issues   and finding   non-linear    functions  that  

describe the complex interacting relationships between the 

inputs (Paegelow, 2018). 

The weighting step is the initial step of MLP learning that 

involves multiplying each input variable by its weight 

(𝑋𝑖𝑊𝑖). Then the sum of product 𝑆𝑖 is calculated by adding 

the product of the subsequent step together as in Equation (1): 

𝑆𝑖 = ∑ 𝑋𝑖𝑊𝑖 + 𝛽0

𝑛

𝑖=1

                  (1) 

Where 𝑋𝑖 is the input feature 𝑖, 𝑛 is the total number of inputs, 

𝑊𝑖 is the weight of each 𝑖 input feature, and 𝛽0 is the bias. 

The second transfer step involves passing the sum of product 

through the activation function therefore a predicted output 𝑦 

is produced as shown in Equation (2): 

𝑦 = 𝑓 (∑ 𝑋𝑖𝑊𝑖 + 𝛽0

𝑛

𝑖=1

   )              (2) 

Then the error is calculated by comparing the predicted and 

the actual outputs using the following Equation (3): 

 

𝐸 = ∑(𝑑 − 𝑦)2

𝑁

𝑖=1

                        (3) 

Where 𝐸 is the error, 𝑁 is the total number of training samples, 

𝑑 is the actual output, and 𝑦 is the model output.  

Any error detected returns backward again and the weights are 

adjusted using the adaptive moment estimation algorithm 

(Adam) as shown in Fig (1). The Adam optimizer is a new 

extension of the stochastic gradient descent algorithm. It 

combines the benefits of 2 algorithms: momentum gradient 

descent and root mean square propagation algorithms to 

rapidly and efficiently update weights during the learning 

process (Kingma and Ba, 2015). The Adam mathematical 

formula is explained as in Equation (4): 

𝑚𝑡 = 𝛽1𝑚𝑡−1 +  (1 − 𝛽1) [
𝛿𝐿

𝛿𝑤𝑡
] , 

               𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝛿𝐿

𝛿𝑤𝑡
]

2

            (4) 

Where 𝑚𝑡 is the aggregate of gradients at time (𝑡), 𝛽 is the 

moving average parameter, 𝑚𝑡−1 is the aggregate of gradients 

at time (𝑡 − 1), 𝛿𝐿 is the derivative of the Loss Function, 𝛿𝑤𝑡 

is the derivative of weights at time (𝑡), and 𝑣𝑡  𝑖𝑠 the sum of 

the square of past gradients. 

 

 
Fig. 1. Architecture of the multilayer perceptron with backpropagation algorithm. 

 

2.5  Model building and hyperparameters tuning 

To build the model, of the 3880 records, 2716 records were 

attributed to the train data set (70%). The remaining 1164 

records were divided between the validation and the test data 

sets, 582 records for each set representing (15%) of the total 

data set. A 10-fold cross-validation technique was used to 

validate the results to avoid overfitting. MLPs with a BP 

algorithm of only one hidden layer were computed using a 

rectified linear activation function (Relu) at the hidden layer 

and a non-linear activation function (sigmoid) at the output 

layer.  

 

Relu function =   𝑓(𝑧) = {
0 𝑓𝑜𝑟 𝑧 < 0
𝑧 𝑓𝑜𝑟 𝑧 ≥ 1

                 (5)

  

Sigmoid function = 𝑓(𝑧) =
1

1+𝑒−𝑧   = {
0 𝑓𝑜𝑟 𝑧 < 0
1 𝑓𝑜𝑟 𝑧 ≥ 0

        (6)     

(Popescu et al., 2009). 

Different setups of MLP with different numbers of hidden 

neurons (8, 10, 15) in combination with different numbers of 

epochs (50, 75, 100, 125) were run with the empirically tuned 

learning rate = 0.001, and batch size = 32. The algorithm was 

programmed to stop learning when 10 successive rounds 

didn’t show any decrease in the loss error (early stopping).  

 

2.6  Model evaluation 

The last step involved the evaluation and comparison of the 

final achieved models based on accuracy, F1 score, precision, 

recall, and ROC-AUC (Dalianis, 2018).                                            

Accuracy: A measurement that expresses the ratio of the total 

number of correctly obtained predictions. 

Accuracy=  
True positive (TP)+True negative (TN)

True positive+False positive (FP)+True negative+False negative (FN)
 

Precision: is also called the positive predictive value and it is 

the proportion of the correctly classified positive instances to 

all positive predictions.     

                           Precision = 
TP 

TP+FP
 

Recall: the ratio of the correctly predictive positive to the total 

actual positive.  

                           Recall = 
TP 

TP+FN
 

F1-score = 2 ×
Precision .Recall 

Precision+Recall
  (Awoyemi et al., 2017). 

The ROC-AUC evaluation criteria calculate the area under the 

receiver operating characteristic (ROC) curve and present the 

TPR (sensitivity) against the FPR (1- specificity) 

= 
1

2
 × (Sensitivity + Specificity) (Bonestroo et al.,   2022). 

All procedures were performed using the Python software 

V.3.7.1. 

3. RESULTS 
 

The comparative analysis of the different single hidden layer 

MLP with BP networks developed in this study by varying 

the number of hidden neurons (8, 10, and 15) and the number 

of epochs (50, 75, 100, and 125) has been made in terms of 

accuracy, F1 score, precision, recall, and AUC on the test 

data set as presented in Table 2.  

The classification accuracy of all models ranged between 

78% and 86%. Further, the F1 score, precision, and recall of 

NN models varied in the ranges of 70–78%, 73–93%, and 

67%–79%, respectively, and the ROC-AUC results varied 

between 76% and 82%. The optimally performed network of 

86% accuracy, 78% f1score, 93% precision, 79% recall, and 

82% ROC-AUC (underlined in Table 2) was selected based 

on the accuracy and the ROC-AUC findings. It was obtained 

from a single hidden layer MLP with a BP neural network 

established by 15 hidden processing units, 100 epochs, batch 

size = 32, learning rate = 0.001, a linear transfer function 

(Relu) in the hidden layer, and a non-linear transfer function 

(sigmoid) in the output layer. 
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Table 2. Comparison of different MLP with BP models' performance of various numbers of  hidden neurons and epochs  

Number of  hidden neurons 

  Epochs Accuracy F1 Score Precision Recall ROC AUC 

8 

50 0.82 0.76 0.77 0.75 0.81 

75 0.82 0.75 0.77 0.73 0.80 

100 0.82 0.75 0.78 0.71 0.80 

125 0.82 0.77 0.75 0.79 0.81 

10 

50 0.83 0.76 0.81 0.72 0.81 

75 0.78 0.70 0.73 0.67 0.76 

100 0.82 0.76 0.76 0.77 0.81 

125 0.82 0.76 0.80 0.71 0.80 

15 

50 0.78 0.70 0.73 0.68 0.76 

75 0.82 0.76 0.78 0.74 0.81 

100 0.86 0.78 0.93 0.67 0.82 

125 0.79 0.72 0.75 0.69 0.78 

The classification accuracy of all models ranged between 

78% and 86%. Further, the F1 score, precision, and recall of 

NN models varied in the ranges of 70–78%, 73–93%, and 

67%–79%, respectively, and the ROC-AUC results varied 

between 76% and 82%. The optimally performed network of 

86% accuracy, 78% f1score, 93% precision, 79% recall, and 

82% ROC-AUC (underlined in Table 2) was selected based 

on the accuracy and the ROC-AUC findings. It was obtained 

from a single hidden layer MLP with a BP neural network 

established by 15 hidden processing units, 100 epochs, batch 

size = 32, learning rate = 0.001, a linear transfer function 

(Relu) in the hidden layer, and a non-linear transfer function 

(sigmoid) in the output layer . 

Fig. 2 shows the AUC under the ROC curve, a graph 

presenting the model classification performance by plotting 

the model sensitivity (true positive rate (TPR)) against 1- 

specificity (false positive rate (FPR)) at all thresholds, for the 

optimal model on the train and test datasets (80% and 82%, 

respectively). Fig. 3 shows the training and validation loss 

and AUC against epochs for the best model of 100 epochs 

and 15 hidden neurons. The graph indicated reduced loss and 

improved AUC with successive epochs . 

 
Fig. 2. The receiver-operator characteristic (ROC) curve for both train and test datasets 

presenting the area under the curve (AUC) for the best MLP with the BP learning algorithm 

( hidden neurons = 15, and number of epochs = 100) . 

 
Fig. 3. The epochs versus the loss and the AUC plot of the best MLP with BP model on 

training and validation datasets (100 epochs and 15 hidden neurons) . 

 

The contribution and importance of each input feature for the 

classification model are displayed in the SHAP value-based 

graphs (Figs. 4 and 5).  The features in Fig. 4 are organized 

in order from the highest to the lowest impact on 

classification. It depends on the absolute mean SHAP value 

for every feature over the 100 examined samples on the x-

axis, but it does not indicate whether this has a positive or 

negative effect on the prediction. TOTM and DIM showed 

the major impact on the prediction model, followed by Days 

Open, DMY, MPEAK, and 305 ME, which were of moderate 

importance, while lactation order, age at last season, and 

reproductive status showed low importance, and the other six 

input features were of no effect on the model . 

 
Fig. 4. Bar plot showing the global features importance plot (The average shap values of the 

important features over all the 100 manipulated samples arranged in descending order) . 

 

In Fig. 5, the features are also ordered by their effect on 

prediction, but we can also see how higher and lower values 

of the feature will affect the result. The data points are 

colored according to the observed feature importance values 

(red: high feature value; blue: low feature value). Red 

positive SHAP values on the right are indicative of mastitis, 

while blue negative SHAP values on the left are indicative of 

healthy cases. The highest values of TOTM and MPEAK 

have a positive impact on mastitis prediction, while the lower 

values have a negative impact. In contrast, the lowest values 

of DIM, Days Open, 305 ME, and DMY have a negative 

impact on the prediction, and their highest values affect the 

prediction positively . 

 
 Fig. 5. SHAP value-based feature importance visualization plot . 

 

4.  DISCUSSION 

 
Two main reasons make the prediction of clinical mastitis by 

the traditional statistical methods insufficient and inaccurate: 

The first is the fact that clinical mastitis is a complex multi-

factorial disorder that depends on various interactive and 
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highly correlated factors, such as udder exposure to various 

types of pathogens, genetic and non-genetic factors, and 

environmental risk factors (Litwińczuk et al., 2015).  

Also, the interactions and multicollinearity among the 

predictors restrict the prediction capability of traditional 

statistical analytical techniques based on both univariate and 

multivariate explanatory variables (Fan and Li, 2001). The 

second is that mastitis is a nonlinear phenomenon and its 

prediction with conventional statistical methods may be 

inappropriate (Tasdemir et al., 2011). A modeling technique 

provided by the ANNs enables the mapping of highly 

complex non-linear functional relationships (Bauer and 

Jagusiak, 2022). In this study, twelve ANNs are introduced 

(MLP with a BP learning algorithm and Adam optimizer) 

varying the number of hidden neurons and epochs to 

determine the optimal model for bovine mastitis prediction 

in Holstein-Friesian cattle milked by the automatic milking 

machine. Out of the twelve computed models, the network 

with 15 hidden neurons and 100 epochs was found to be the 

best one in terms of accuracy (86%), F1 score (78%), 

precision (93%), recall (67%), and an excellent ROC-AUC 

(82%). This is according to Hosmer and Lemeshow (2000), 

who stated that an AUC of 0.8 to 0.9 indicates excellent 

classification ability. Similar results were achieved by Wang 

and Samarasinghe (2005), who compared two different 

ANN algorithms for the classification of clinical mastitis 

(MLP and self-organizing map (SOM)). The MLP showed a 

higher accuracy of 84%. Also, the recurrent NN gained a 

high accuracy ranging from 78% to 82% for the clinical 

mastitis prediction 3 days before its diagnosis using all milk 

and behavioral variables and their daily variance recorded by 

the farm AMS (Naqvi et al., 2022). TOTM, DIM, Days 

Open, DMY, MPEAK, and 305 ME were the important 

features in building such an excellent model with an 82% 

AUC. Consistent with these findings, Faris et al. (2024) 

reported that DIM, age at the last season, lactation order, 

305ME, and DMY were the important features for the 73% 

accurate decision tree model of clinical mastitis prediction  . 

It was shown that TOTM and MPEAK had a positive impact 

on the onset of mastitis (cows with higher TOTM and 

MPEAK were classified as having positive mastitis). 

This finding can be explained based on the fact that highly 

lactating exotic and cross-dairy breeds like Holstein Friesian 

are more susceptible to intra-mammary infection and mastitis 

than indigenous breeds (Sinha et al., 2021). Also, Shalan et 

al. (2023) reported that cows with higher milk production 

(12820.2 kg) were three times more prone to mastitis than 

others with lower milk production (11421.89 kg) due to the 

metabolic stress of peak milk yield . 

DIM was the second important input that showed a negative 

effect on the positive classification of mastitis. This was in 

line with Ankinakatte et al. (2013), who found that including 

DIM as an input improved the NN's sensitivity by almost 

10%. The significant udder tissue changes noticed in the 

early lactation lead to decreased natural defense ability of the 

cow udder, resulting in pathogens' invasion of the teat canals 

causing infection (Tiwari et al., 2013), and also the oxidative 

stress of the early lactation and the suppressed antioxidant 

defense mechanism are the important factors of mastitis 

infection immediately after parturition (Gunay and Gunay, 

2008)  . 

Regarding the days open, it was revealed that the lower 

values were associated with a mastitis infection. This result 

agreed with Borş et al. (2023), who revealed that the average 

number of days open in the mastitic cows (112 days) was 

significantly lower than in the healthy cows (142 days) . 

Both DMY and 305ME showed an inverse relationship with 

mastitis, as it resulted in a significant loss of milk production. 

Supportive results were obtained by Ameni et al. (2022), who 

found that the mastitis-infected cows had a significantly (p < 

0.001) lower average DMY than healthy cows (18.6 kg and 

40.5 kg, respectively). This is due to the pathological changes 

in the udder tissue due to the inflammatory reaction; hence, 

the udder becomes unhealthy, and its productive efficiency 

declines (Hagnestam et al., 2007). As a result of diminished 

milk production and discarding the milk during the illness 

period, the 305ME continuously decreases . 

Overall, these results prove that MLP neural networks with 

the BP algorithm are powerful tools for building mastitis 

detection and prediction models in dairy farms monitored 

using AMS, which provides accurate decision-making and 

livestock profitability . 

 

5 . CONCLUSIONS 

 
This study explores the capability of the neural network for 

intelligent prediction of clinical mastitis in Holstein dairy 

cattle using the AMS data. The error backpropagation 

forward neural networks along with various combinations of 

model hyperparameters as well as the number of hidden 

neurons and epochs we empirically explored. The optimal 

model of 86% accuracy and excellent ROC-AUC (82%) was 

achieved using a single hidden layer MLP with the BP 

algorithm and Adam optimizer of 15 processing hidden units, 

100 epochs, a learning rate =0.001, a batch size = 32, and the 

Relu activation function at the hidden layer and the sigmoid 

function at the output layer . 
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